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The Use and Misuse of Chi-Square: Lewis and Burke Revisited

Kevin L. Delucchi
Department of Education University of California, Berkeley

The proper use of Karl Pearson's chi-square for the analysis of contingency tables
is reviewed. The 1949 article by Lewis and Burke, who cited nine sources of error
in the use of chi-square, is updated. Research on the application of the chi-square
statistic is examined and supplementary and alternative approaches are discussed.
Emphasis is placed on techniques that are of use to the practicing researcher who
often deals with qualitative ordered and unordered data.

In 1949 the landmark article by Lewis and
Burke entitled "The Use and Misuse of the
Chi-Square Test" appeared in the Psycholog-
ical Bulletin. The purpose of the article was
to counteract the improper use of this statis-
tic by researchers in the behavioral sciences.
The paper addressed nine major sources of
error, cited examples from the literature to
illustrate these points, and caused a stir
among practicing researchers. The Lewis and
Burke paper was followed by several respon-
ses (Edwards, 1950; Pastore, 1950; Peters,
1950) and a rejoinder by Lewis and Burke
(1950).

Since then, a great deal of research has
been conducted on the chi-square procedure
and several methods have been developed to
handle some of the problems cited by Lewis
and Burke. This article is a review of that
literature. It is an attempt to address the
problems listed by Lewis and Burke in light
of current knowledge and to form recom-
mendations regarding the use and misuse of
the chi-square test.

The Use and Misuse of Chi-Square
Lewis and Burke centered their 1949 ar-

ticle around nine principle sources of error
they found in their review of published re-
search. Those nine sources are:
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1. Lack of independence among single events
or measures

2. Small theoretical frequencies
3. Neglect of frequencies of non-occurrence
4. Failure to equalize the sum of the ob-

served frequencies and the sum of the
theoretical frequencies

5. Indeterminant theoretical frequencies
6. Incorrect or questionable categorizing
7. Use of nonfrequency data
8. Incorrect determination of the number of

degrees of freedom
9. Incorrect computations.

The errors they cited still occasionally ap-
pear, and, as a consequence, their article
should be required reading by anyone who
intends to use the chi-square statistic. There
is little to add to Lewis and Burke's discussion
with respect to most of these issues. The
major exception centers on the question of
the minimal size of expected cell frequencies.
A number of statisticians have addressed this
point in the years since publication of the
Lewis and Burke paper, and the following
section will summarize their work.

Small Theoretical Frequencies

Lewis and Burke (1949) called the use of
expected frequencies that are too small the
most common weakness in the use of chi-
square (p. 460). They took the position that
expected values of 5 were probably too low
and stated a preference for a minimum ex-
pected value of 10, with 5 as the absolute
lowest limit. Lewis and Burke cited as ex-
amples two published studies that used chi-
square tests with expected values below 10.
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It appears today that their position, a popular
one among researchers, may be overly con-
servative.

This problem has been examined from the
perspectives of two different applications. In
testing goodness-of-fit hypotheses, the cate-
gories are chosen arbitrarily, permitting con-
trol over the size of the expected values by
choice of the category sizes. In contrast, the
categories of contingency tables used for test-
ing association hypotheses are relatively lim-
ited, and one is forced to increase the ex-
pected values by increasing the sample size
and/or collapsing rows and/or columns. Re-
search taken from the perspective of this lat-
ter case will be considered first.

Tests of association hypotheses in contin-
gency tables. Recommendations with re-
spect to minimum expected cell frequencies
have included recommended minimum val-
ues of 1 (Jeffreys, 1961; Kempthorne, 1966;
Slakter, 1965), 5 (Fisher, 1938), 10 (Cramer,
1946), and 20 (Kendall, 1952). Wise (1963)
recommended small (i.e., less than five) but
equal expected frequencies over the case
where a few expected values are small and
the remaining frequencies are well above
most criteria.

Cochran (1952) suggested that chi-square
may be applied if no more than 20% of the
cells have expected values between one and
five. Good, Grover, and Mitchell (1970) con-
cluded that if the expected values are equal,
they may be as low as 1/3 (p. 275). This ap-
parent robust nature of the procedure is also
supported by Lewontin and Felsenstein
(1965), who used Monte Carlo methods to
examine 2 X N tables with fixed marginals.
With small expected values in each cell and
degrees of freedom (df) greater than 5, they
concluded that the test tends to be' conser-
vative. Even the occurrences of expected val-
ues below one generally do not invalidate the
procedure. Bradely, Bradely, McGrath, and
Cutcomb (1979) conducted a series of sam-
pling experiments to examine the Type I er-
ror rates of chi-square in the presence of
small expected values in tables as large as
4 X 4 . Their results offer strong support for
the robustness of the statistic in meeting
preassigned Type I error rates. Additional
support comes from Camilli and Hopkins'

(1978) study of chi-square in 2 X 2 tables;
they found expected values as low as one or
two were acceptable when the total sample
size was greater than 20.

Testing goodness-of-fit hypotheses. In test-
ing goodness-of-fit hypotheses, Kendall and
Stuart (1969), following suggestions by Mann
and Wald (1942) and Gumbel (1943), rec-
ommended that one choose the boundaries
of categories so that each has an expected
frequency equal to the reciprocal of the num-
ber of categories. They prefer a minimum
value of five categories. Slakter (1965, 1966),
Good (1961), and Wise (1963) have all found
that in testing goodness-of-fit, expected val-
ues may be as low as one or two for an alpha
of .05 when the expected values are equal.
For unequal expected values or an alpha of
.01, the expected frequencies should be at
least four or larger.

In an article based on his dissertation,
Yarnold (1970) numerically examined the
accuracy of the approximation of the chi-
square goodness-of-fit statistic. He proposed
that "If the number of classes, s, is three or
more, and if r denotes the number of expec-
tations less than five, then the minimum ex-
pectation may be as small as Sr/s" (p. 865).
He concluded that "the upper one and five
percentage points of the x2 approximation
can be used with much smaller expectations
than previously considered possible" (p. 882).

After considering earlier work, Roscoe and
Byars (1971) recommended that for the good-
ness-of-fit statistic with more than one degree
of freedom, one should be concerned with
the average expected value. In the case of
equal expected cell frequencies, they sug-
gested an average value of 2 or more for an
alpha equal to .05 and 4 or more for an alpha
equal to .01. In the nonuniform case, they
recommend average expected values of 6 and
10, respectively. They urged the use of this
average expected value rule in the test for
independence as well, even when the sample
sizes are not equal.

As Horn (1977) has noted, this average
expected value rule is in agreement with Slak-
ter's (1965, 1966) suggestion that what may
be most important is the average of the
expected frequencies. Horn also noted that
this subsumes Cochran's rule that 20% of
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the expected frequencies should be greater
than one.

Summarizing this work on minimum ex-
pected values for both asociation and good-
ness-of-fit hypotheses, it seems that, as a gen-
eral rule, the chi-square statistic may be prop-
erly used in cases where the expected values
are much lower than previously considered
permissible. In the presence of small ex-
pected values, the statistic is quite robust with
respect to controlling Type I error rate, espe-
cially under the following conditions: (a) the
total N is at least five times the number of
cells, (b) the average expected value is five or
more, (c) the expected values tend toward
homogeneity, and (d) the distribution of the
margins is not skewed. Additional references
on this matter that may be of interest to read-
ers can be found in Hutchinson (1979).

For most applications, Cochran's rule,
which states that all expected values be
greater than one and not more than 20% be
less than five, offers a fair balance between
practicality and precision. An alternative to
consider, especially in the case of small tables,
is the computation of an exact test. For ref-
erence to the exact test the reader is referred
to Agresti and Wackerly (1977) and Baker
(1977). Berkson (1978) and Kempthorne
(1979) present a debate over the use of the
exact test in 2 X 2 tables that the interested
researcher should examine.

Power considerations. An important point
that is easily overlooked regards the effect of
small expected values on the power of the
chi-square test. Overall (1980) has examined
the effect of low expected frequencies in one
row or column of a 2 X 2 design on the power
of the chi-square statistic. This most often
results from the analysis of infrequently oc-
curring events. Setting (1 — a) = .70 as a
minimally acceptable level, Overall con-
cluded that when expected values are quite
low, the power of the chi-square test drops
to a level that produces a statistic that, in his
view, is almost useless.

Correction for Continuity

Lewis and Burke presented the Yates cor-
rection for continuity, noting that it is jus-
tified only in the case of a 2 X 2 table. Ques-
tions have arisen regarding the appropriate-
ness of the use of a correction for continuity.

Since categorical variables are discrete and
the chi-square distribution is continuous, a
correction to improve the approximation can
be made. The most well known was proposed
by Yates (1934) and is made by adding or
subtracting {h to each observed frequency so
as to move the observed value closer to the
expected value. Thus it becomes more dif-
ficult to reject the hypothesis being tested.
Symbolically, the corrected chi-square is
written as

X$ Z-i d)

The analytical derivation of the correction
expressed in Equation 1 is given by Cox
(1970).

The disagreement over the use of this cor-
rection is based not on its theoretical ground-
ing but on its applicability. Plackett (1964),
confirming empirical results of Pearson
(1947), argued that the correction is inap-
propriate if the data come from independent
binomial samples. Grizzle (1967) extended
Plackett's results to the general case and con-
cluded that the correction is so conservative
it is rendered useless for practical purposes.

The consensus of several investigators
(Camilli & Hopkins, 1978; Conover, 1974a,
1974b; Mantel, 1974; Mantel & Greenhouse,
1968; Miettinen, 1974; Starmer, Grizzle, &
Sen, 1974) seems to be that the correction
for continuity becomes overly conservative
when either or both of the marginals in a
table are random. As this is often the case in
social science research, it would appear that
the use of the correction should not be given
the blanket recommendation that often ac-
companies it. If strong conservatism is de-
sired and/or the marginal totals in the con-
tingency table being analyzed are fixed val-
ues, then the Yates correction should be
applied. In all other cases, however, one must
be cautious in its use because the correction
for continuity will produce very conservative
probability estimates.

Misdassification

One issue of categorical analysis that has
received little attention in social science re-
search is the effect of misclassification on the
power and Type I error rate of the chi-square
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test. The majority of relevant literature is
found in biostatistics (e.g., Mote & Anderson,
1965). One notable exception to this is an
article by Katz and McSweeney (1979), who
discuss the effects of classification error on
the significance level and power of the test for
equality of proportions.

They develop and discuss a correction pro-
cedure based on estimates of the probability
of false negatives and false positives. As Katz
and McSweeney note, the detrimental effects
of misclassification can be marked, including
a loss in power. This is especially true when
one of the proportions being tested is small
and the probability of misclassification is not
equivalent across groups. Any researcher
who suspects the presence of misclassified
data points should consult the Katz and
McSweeney (1979) article and the references
they cite. The key to using their procedure,
and its major drawback, is the need for es-
timates of the rate of misclassification that
may often be unobtainable.

Supplementary and Alternative Procedures

Log- and Logit-Linear Models

A major drawback to the use of Pearson's
chi-square lies in the fact that it does not
readily extend to the analysis of multidimen-
sional contingency tables. An alternative ap-
proach, which readily extends to higher order
tables, is the use of log-linear and logit-linear
models. Many articles and texts are now
available for these procedures, including the
works of Bishop, Fienberg, and Holland
(1975), Goodman (1978), Haberman (1978),
and Fienberg (1980). These procedures are
implemented through several packaged com-
puter programs including SAS FUNCAT,
Goodman's ECTA, BMDP 4F, Nelder's GLIM,
and Bock's MULTIQUAL, which are familiar
to many researchers.

Although most applicable for analyzing
multidimensional tables, it should be pointed
out that these models can be used on two-
dimensional tables as well. It is not difficult
to argue that log-linear models will eventually
supersede the use of Pearson's chi-square in
the future because of their similarity to anal-
ysis of variance (ANOVA) procedures and their
extension to higher order tables. Discussion
of this methodology, however, is beyond both

the scope and focus of this article. The fol-
lowing topics of partitioning, the use of G2,
and the analysis of ordered categories are
often cited as particular instances where log-
and logit-linear models may be preferred.

Log-Likelihood Ratio

An alternative procedure to calculating
Pearson's chi-square to test a hypothesis con-
cerning a multinomial is the use of the like-
lihood ratio statistic. It is a maximum like-
lihood estimate labeled G2 and defined as

/ j
G2 = 2 2 2 x,,

/=! /=!
(2)

In their text on discrete multivariant anal-
ysis, Bishop, Fienberg, and Holland (1975)
used log-linear models, as opposed to addi-
tive models, for contingency table analysis.
As a summary statistic, they stated a pref-
erence for maximum likelihood estimators.
(MLEs) on theoretical grounds. Additionally,
practical reasons for the use of this procedure
were given:

1. Ease of computation for linear models.
2. MLEs satisfy certain marginal constraints

they call intuitive.
3. "The method of maximum likelihood can

be applied directly to multinomial data
with several observed cell values of zero,
and almost always produces non-zero es-
timates for such cells (an extremely valu-
able property in small samples)" (p. 58).

They further state,

MLEs necessarily give minimum values of G2, it is ap-
propriate to use G2 as a summary statistic . . . although
the reader will observe that, in those samples where we
compute both X2 and G2, the difference in numerical
value of the two is seldom large enough to be of practical
importance, (p. 126)

There are cases where the likelihood-ratio
statistic may be preferred over chi-square.
Such may occur when some expected values
are quite small or when the contingency table
contains a structural zero.

Several investigators have compared X2

and G2 in a variety of research situations.
Chapman (1976) provides an overview of
much of this research, including the work of
Neyman and Pearson (1931), Cochran (1936),
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Fisher (1950), Good, Graver, and Mitchell
(1970), and West and Kempthorne (1972).
From these comparisons, neither of the two
procedures emerges a clear favorite. When
one method is better in some respect than the
other, it seems to result from a particular con-
figuration of sample size, number of cate-
gories, expected values, and the alternative
hypothesis. An exception to the general
equivalence of these two statistics can be
found in the literature on partitioning of con-
tingency tables, which is discussed next.

Partitioning

At about the same time that Lewis and
Burke were writing, the first extensive work
on the partitioning of an / X J contingency
table into components was being conducted
by Lancaster (1949, 1950, 1951), who dem-
onstrated that a general term of a multino-
mial can be reduced to a series of binomial
terms, each with one degree of freedom. Ir-
win (1949) presented a formula for exact par-
titioning, which was simplified algebraically
by Kimbal (1954) for easier computation.
Ten years later Kastenbaum (1960) general-
ized the partitioning procedure to handle
cases where some of the desired partitions
contained more than one degree of freedom.
Castellan (1965) reviewed these partitioning
procedures and argued for their use in place
of constructing a series of 2 X 2 tables, based
on the following two points.

First, in setting up the full contingency ta-
ble, it is assumed that the marginal totals rep-
resent the population values. It is more likely
that the marginals for any 2 x 2 table, taken
from the full table, will not adequately reflect
those population values. Instead, they will
reflect a population different from other pop-
ulations generated from the same table. There
will be as many populations represented as
there are 2 X 2 tables produced.

Second, following the procedure Castellan
presented, the 2 X 2 tables produce statistics
that sum to the chi-square value for the orig-
inal table. This independence of tables pro-
duces uncorrelated chi-squares and thus al-
lows for more meaningful interpretation.

Bresnahan and Shapiro (1966) examined
methods for partitioning, including the meth-
ods for determining possible partitions. They

concluded that all forms of a partitioning fol-
low three basic rules: (a) each cell appears
alone once and only once, (b) the same com-
bination of cells appears only once, and (c)
the dividing lines of a partition do not hold
for other partitions. Following these rules,
additional partitioning schemes may be em-
ployed. A general equation for the chi-square
is derived that may be applied to any table
that results from partitioning. The equation
for an I X J table is written as follows:

(/-I )(, 2_ y y >,„-!) - L L, I

-m
where

/ = the number of rows in the partitioned
table;

m = the number of columns in the parti-
tioned table;

e/j - the expected value for cell ij calculated
from the original table;

Xj] = the observed frequency in cell /;
m

<?/. = 2 £?,-;•;

e- i =1

>,. = 2

°-i= 2 x,,;
/=i

/ m

0 = 2 2 * , ;

£ = 2 2 , , ;
1=1 1=1

Bresnahan and Shapiro (1966) advocated
the use of this formula in cases where some
cells have low expected values. Instead of
pooling data or discarding it to raise the low
expected values, one can calculate a chi-
square based on the table configuration that
contains adequate expected values. The value
of the chi-square for the partitioned table will
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be the contribution of that part of the table
to the chi-square for the entire table. For the
special case of the analysis of 2 X k tables,
Brunden (1972) proposed the use of rank
sums as suggested by Steel (1960) and ex-
tended by Dunn (1964) instead of parti-
tioning.

Shaffer (1973) has taken exception to the
use of these methods of partitioning, claiming
that they do not actually test the questions
of interest. For example, a 2 X 4 table may
be partitioned into three separate tests, each
with one degree of freedom. Shaffer dem-
onstrated that to test the first of the three
resulting hypotheses actually entails testing
that all three partitions do not contain sig-
nificant differences against the alternate hy-
pothesis that the first partition is significant
and that the other two are not. This results
from the fact that the data from the entire
table enter the calculation for a portion of
the table in the determination of the expected
values. She therefore contends that the data
from the entire table should not enter into
a partition, since the test produced is not the
statistic desired.

On the basis of this argument, Shaffer
(1973) proposed the use of the likelihood ra-
tio statistic. Though it does not partition ex-
actly, its use overcomes the problem of testing
"inappropriate" hypotheses. Shaffer has noted
that although there is no evidence for the su-
periority of one method over another, Pear-
son's method has historical priority and a
greater ease of computation.

Regardless of which method one uses, par-
titioning increases the amount of informa-
tion one is able to glean from the data. If the
partitions are orthogonal to one another, the
information rendered from each partition
does not overlap with any other. However,
Shaffer's paper presents an interesting di-
lemma.

If one requires a test of a partition, inde-
pendent of the structure of the rest of the
partitions, then one must use the log-likeli-
hood ratio as she proposed. Although the
likelihood ratios for each partition do not
sum to the ratio for the complete table, this
may not always be a problem. Often, only
one partition is meaningful and/or accounts
for much of the total variation. In such cases,
the choice between the use of the log-likeli-

hood statistic and chi-square rests on the al-
ternate hypothesis that is of interest. If one
wishes to test a single partition for homoge-
neity against the hypothesis that it is not ho-
mogeneous and the rest of the partitions are,
then chi-square is appropriate. If the test is
to be done independently of the structure of
the rest of the table, then the log-likelihood
ratio is the method of choice. Other appli-
cations of the log-likelihood ratio will be dis-
cussed in the next section.

Several procedures that supplement or
provide an alternative to partitioning are
available. Graphical analysis is discussed and
exemplified by Boardman (1977), Cohen
(1980), Cox and Laugh (1967), Fienberg
(1969), and Snee (1974). One version of
graphical analysis, based on Brown's work
(1974, 1976), is implemented by BMDP's 2F
procedure (Dixon & Brown, 1977). Other
alternative procedures are comparisons of
individual proportions and testing hy-
potheses about order. These will be consid-
ered next.

Comparison of Individual Proportions
The chi-square procedure, as Berkson

noted in 1938, is an omnibus test. In the case
of a test for homogeneity among K groups
classified by J levels of the dependent variable
A, the hypothesis under test is that

P(A2\Gl) P(A2\G2)

P(A2)P(Al\GK)

P(Aj\GK)
against the alternative that H0 is false. If the
hypothesis is rejected, one would like to be
able to find the contrasts among the propor-
tions that are significantly different from
zero.

This may be accomplished by a well-
known procedure that allows one to con-
struct simultaneous confidence intervals for
all contrasts of the proportions in the design,
across groups, while maintaining the speci-
fied Type I error probability. The method is
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an extension of Scheffe's (1953) theorem,
which is used for the construction of con-
trasts in the analysis of variance.

If a linear contrast in the population pro-
portions in a contingency table is denoted as
i/-, the sample estimate is ̂  and is defined as

where pk is the proportion in Group k and
S^ = 0. The limiting probability is (1 -
a) that, for all contrasts,

where

4=1 -

(5)

(6)

and Yxje-i:i-a
2 is the (1 - a)th percent value

from the chi-square distribution with K — 1
degrees of freedom. Some of the earlier work
with this procedure may be found in Gait
(1962), Gold (1963), and Goodman (1964).

The only drawback to this post hoc pro-
cedure is its lack of power relative to a
planned set of contrasts. A generally more
powerful procedure results from the use of
a Bonferroni type critical value where the
Type I error probability is spread over just
the contrasts of interest. Such a value may
be found in the table given by Dunn (1961).
The value VxAr-i:i-«2 in the confidence inter-
val is replaced by the value taken from
Dunn's table based on Q, which equals the
number of planned contrasts and the degrees
of freedom, which equals infinity.

Analysis of Ordered Categories

In spite of its usefulness, there are condi-
tions under which the use of Pearson's chi-
square, although appropriate, is not the op-
timum procedure. Such a situation occurs
when the categories forming a table have a
natural ordering. The value of the statistic
expressed in Equation 4 will not be altered
if the rows and/or columns in a table are
permuted. However, if ordering of the rows
or columns exists, their order cannot mean-
ingfully be changed. This is information that
chi-square is not sensitive to. Instead, the re-
searcher may choose among several alterna-
tives.

If both rows and columns contain a nat-
ural ordering, two methods are available.
The first is a procedure taken from Max-
well (1961) as modified by Marascuilo and
McSweeney (1977). It is used to test for a
monotonic trend in the responses across cat-
egories.

The first step is to quantify the categories
using any arbitrary numbering system. As the
method is independent of the numbers cho-
sen, both Maxwell and Marascuilo and
McSweeney recommend numbers that sim-
plify the calculations such as the linear coef-
ficients in a table of orthogonal polynomials.
These coefficients are then applied to the
marginal frequencies, the F/. and Y.}, to
produce the sums and sums of squares for
use in calculating a slope coefficient by the
usual formula,

~ _
p ~ (7)

Under the assumption that (3 = 0, the stan-
dard error of $ is calculated as

SEl =
S2y.

- 1)SV
(8)

Then the hypothesis of no linear trend may
be tested by

SE} X?-.- (9)

A second procedure for examining tables
with ordered marginal categories involves the
use of Kendall's (1970) rank tau, corrected
for ties. If the observed tau is statistically sig-
nificant, the hypothesis of no association is
rejected. In addition, the statistic itself is a
measure of association or array of the data.
Further comments are contained in the sec-
tion of measures of association.

When one of the two variables defining a
table is ordered, Kruskal and Wallis's (1952)
nonparametric one-way analysis-of-variance
procedure may be utilized to test for equality
of distributions. This procedure is described
by Marascuilo and Dagenais (1982). Con-
sider the case of an / X K contingency table,
where the dimension / is defined by mutually
exclusive ordered categories. The Kruskal-
Wallis statistic is based on a simultaneous
comparison of the sum of the ranks for the
K groups. To apply the statistic in the case
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of an 7 X K table the frequencies within a
category along dimension / are considered to
be tied and, therefore, are all assigned a mid-
rank value. One then sums the ranks across
/, within Group k, to obtain the summed
ranks used in calculating the statistic.

Comparison of Two Independent
Chi-Squares

Situations may occur in which one may
want to test the equality of two independent
chi-square values. Knepp and Entwisle (1969)
have presented, in tabular form, the 1% and
5% critical values for this comparison for
degrees of freedom = 1 to 100. They also
provide a normal approximation calculated
as

z = (10)

where X\ and X\ are two independent sample
chi-square values, each with v degrees of free-
dom. The statistic z is approximately distrib-
uted as a unit normal variable.

D'Agostino and Rosman (1971) have of-
fered another simple normal approximation
for comparing two chi-square values in the
form of

z = (11)

This approximation was tested by Monte
Carlo methods and found to be quite good
for cases with degrees of freedom greater than
2. For one degree of freedom the researcher
must use Knepp and Entwistle's tabled val-
ues, which are 2.19 for a = .05 and 3.66 for
a - .01. D'Agostino and Rosman also note
that for dfs greater than 20, the denominator
in Equation 1 1 makes little difference and

may be used in place of Equation 10.
One should note that these procedures

should be used cautiously for at least two rea-
sons. It is possible for very different config-
urations within two tables to produce the
same chi-square values. It is also possible to
obtain different values of chi-square from ta-
bles with identical internal patterns if the
sample sizes differ between tables.

Measures of Association

The value of a chi-square statistic is dif-
ficult to evaluate as it is both a function of
the truth of the hypothesis under test and a
function of sample size. To double the size
of a sample, barring sample-to-sample fluc-
tuations, will double the size of the associated
chi-square. To compensate for this, the data
analyst should always calculate an appropri-
ate measure of association so as to allow for
judging the practical, that is, the meaningful
significance of the findings,

If the data are generated from a single sam-
ple, then the proper test is one of indepen-
dence and a measure of association is the
mean square contingency coefficient. Desig-
nated as </>2, it's sample estimate is calculated
as

»2 = Z 2
(=1 /=!

r?•*//.. (13)

It can be shown that the maximum value that
$2 can attain is <£max = the minimum of
7 - 1 or / — 1. To correct for this compute

^' = ̂ , (H)

which is referred to as Cramer's measure of
association (Cramer, 1946).

In the case of a table generated from K
samples, the proper measure of association
is given by the work of Light and Margolin
(1971) as a ratio of the sum of squares be-
tween the K groups over the total sum of
squares. Their measure, R2

LM, is tested for
significance by a chi-square statistic calcu-
lated as X2 = (N - !)(/ - \)R2

LM, which is
tested at dj = (I - l)(K - 1). Light and
Margolin have shown that their statistic tends
to be larger in some situations, and therefore
more powerful, than the ordinary chi-square
in the analysis of a AT-group design.

When the frequencies of the K groups are
cross-classified by a dependent variable that
is ordered, Serlin, Carr, and Marascuilo
(1982) have proposed a measure that is the
ratio of the calculated test statistic to the
maximum the statistic can reach. Their mea-
sure ranges from zero to unity, and it is in-
terpreted just as eta-squared is in the para-
metric ANOVA.

If-both variables are ordered, one is pre-
sented with a variety of choices including the
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standard product-moment correlation coef-
ficient (Kendall & Stuart, 1969), tau (Ken-
dall, 1970), and gamma (Goodman & Krus-
kal, 1954, 1959, 1963). Comparison of these
methods is given by Gans and Robertson
(1981) and Cesa (1982). Tau is generally rec-
ommended as it approaches the normal dis-
tribution faster than Spearman's rho (Ken-
dall, 1970) and is not inflated by the exclu-
sion of tied values as gamma is.

In the case of a 2 X 2 table, the well-known
measure of association based on chi-square
is phi and is calculated as

*>-£. 05)

If Kendall's tau is calculated for the same
table, then it will be seen that 4> - T. An
alternative to the use of phi is to employ the
odds ratio ( Fienberg, 1980).

For a 2 X 2 table the categories denning
the table may be labeled as A, A, B, and B.
The probability of observing B, given the
presence of A, can be expressed as

P(B|A)
Alternately, the probability of observing B,
given the absence of A, is

*B|*> (17)

A simple measure of association, apparently
first proposed by Cornfield ( 1 9 5 1 ), is the ratio
of these two odds, In the sample, the measure
is calculated as

(18)

with a standard error estimated as

SE^ = xn + x22 + xn + x2[ . (19)
A useful discussion of this measure in-

cluding additional references may be found
in Fleiss (1973). The choice between the two
coefficients, tau and phi, for the 2 X 2 table
is not clear cut and the reader is referred to
Fleiss for further discussion.

Summary

In summary, a few points bear repetition.
Under certain conditions, expected cell fre-
quencies less than five do not substantially
alter the Type I error rate of the chi-square

statistic. The decrease in power that accom-
panies these small expected values, though,
should encourage one to use large sample
sizes.

The debate over the use of the Yates cor-
rection for continuity is unresolved. There
is general agreement, however, that the cor-
rection often results in a most conservative
test when the margins in a table are generated
from random variables.

There are a number of supplementary and
alternative approaches to the use of Pearson's
chi-square that the researcher should know.
Often the questions one asks of data may be
more directly or more efficiently answered
by planned contrasts of proportions, parti-
tioning of the total chi-square, or the use of
log-linear models. A useful paper on this sub-
ject was written by Cochran (1954). He pre-
sented methods for dealing with some specific
contingency table designs and probability
distributions. In addition to the previously
mentioned recommendations regarding min-
imum expected values, he discussed testing
goodness-of-fit hypotheses in different distri-
butions, degrees of freedom in 2 X N tables,
and combining 2 X 2 tables.
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